有趣的猜想(Vol. 1)

2023-1-21

666 猜想

相信大家都知道欧拉函数($\def \phi{\varphi}\phi(n)$)吧,这是一个非常有趣的函数。

欧拉函数

在数论中,对正整数$n$,欧拉函数是小于$n$的正整数中与$n$互质的数的个数。

观察下列等式。

$$ \begin{aligned} \phi(6) &= 2 = 2^{1}\\ \phi(\phi(66)) &= 8 = 2^{3}\\ \phi(\phi(\phi(666))) &= 24\\ \phi(\phi(\phi(\phi(6666)))) &= 128 = 2^{7}\\ \phi(\phi(\phi(\phi(\phi(66666))))) &= 256 = 2^{8}\\ \phi(\phi(\phi(\phi(\phi(\phi(666666)))))) &= 512 = 2^{9}\\ \phi(\phi(\phi(\phi(\phi(\phi(\phi(6666666))))))) &= 8192 = 2^{13}\\ \phi(\phi(\phi(\phi(\phi(\phi(\phi(\phi(66666666)))))))) &= 32768 = 2^{15}\\ \phi(\phi(\phi(\phi(\phi(\phi(\phi(\phi(\phi(666666666))))))))) &= 24576\\ \phi(\phi(\phi(\phi(\phi(\phi(\phi(\phi(\phi(\phi(6666666666)))))))))) &= 131072 = 2^{18}\\ \cdots \end{aligned} $$

猜想:等于$2$的正整数幂的等式不会穷尽。

为了方便陈述,现在这里定义函数$\def \Liu{\rm{Liu}}\Liu(x)=\frac{2}{3}(10^x-1)$ 。(也就是说, $\Liu(x)=\overset{x个}{\overbrace{66\cdots6}}$ )

形式化地说,猜想:集合$\{(x,k)|\phi^x(\Liu(x))=2^k,x,k\in\mathbb{Z}^+\}$是无限集。 换句话说:满足$\phi^x(\Liu(x))=2^k$的正整数对$(x,k)$有无穷多个。

二幂有奇猜想

观察下列式子。

$$ \begin{aligned} 2^0&=1\\ 2^1&=2\\ 2^2&=4\\ 2^3&=8\\ 2^4&=16\\ 2^5&=32\\ 2^6&=64\\ 2^7&=128\\ 2^8&=256\\ 2^9&=512\\ 2^{10}&=1024\\ 2^{11}&=2048\\ 2^{12}&=4096\\ \cdots \end{aligned} $$

我们定义:$2$的自然数幂为二幂数。形式化的说:$\forall k \in \mathbb{N}$,$2^k$被称为二幂数;

猜想:$\forall k > 11 \in \mathbb{N}$,$2^k$在十进制表示下至少有一位是奇数。